張峰(Feng Zhang)
張峰 職稱:教授/博士生導師 郵箱👨🏼🦱:fengzhang@fudan.edu.cn 研究興趣 主要集中在大氣輻射與衛星氣象學、氣象大數據與人工智能、數值模式物理過程參數化 教育背景 學士學位(2006年),物理學,浙江師範大學 碩士學位(2010年),大氣科學,中國氣象科學研究院 博士學位(2013年),氣象學🕴🏻🧜🏻,中國氣象科學研究院和中科院大學聯合培養 研究經歷 2020-至今,沐鸣2/大氣科學研究院,教授,博導 2023-至今🙍🏼,沐鸣2平台信息科學與工程學院(兼職),教授🥹,博導 2014-2019,南京信息工程大學大氣科學學院🏊🏽,歷任校聘教授,教授,博導 2018-2019,德國宇航中心遙感技術研究所,洪堡學者 2016-2018,日本東北大學,日本學術振興會(JSPS)海外特別研究員 2010-2014🤲🏼,中國氣象局上海臺風研究所,歷任實研👨🏼💼、助研 承擔課題 2023.01-2025.12: 國家自然科學基金委優秀青年基金項目(4222506),大氣輻射模式,項目負責人; 2021.12-2024.11: 國家重點研發計劃“臺風變分辨率預報模式的關鍵物理過程研究與示範應用”第一課題(2021YFC3000801),適用於臺風變分辨率預報的雲宏觀特征與輻射過程參數化研究,課題負責人🚠; 2021.01-2024.12: 國家自然科學基金面上項目(42075125),熱紅外多通道聯合反演冰雲微物理特性研究,項目負責人; 2020.11-2022.10: 2020年度上海市浦江人才計劃(20PJ1401800)⚁🍭,基於機器學習方法的可見光和熱紅外多通道聯合反演冰雲微物理特性研究,項目負責人; 2020.11-2023.10: 上海市科委(612020029),氣象大數據與人工智能交叉研究項目,項目負責人👍; 2020.02-2023.02: 霍英東教育基金會第十七屆高等院校青年教師基金(171012)🧝🏿♂️,雲輻射參數化研究🧚♀️,項目負責人🫴🏼; 2018.12-2021.12: 國家重點研發計劃“多尺度全球大氣數值模式物理過程和資料同化系統研究”第二課題(2018YFC1507002)⏯,大氣輻射過程參數化研究🔱,課題負責人😮💨; 2017.1-2020.12: 國家自然科學基金面上項目(41675003),適用於雲微物理特性連續變化的輻射傳輸新理論研究及其在氣候模式模擬中的應用🎏,項目負責人; 2014.1-2016.12: 國家自然科學基金青年項目(41305004),四流累加輻射傳輸理論研究及其在氣候模式中的應用,項目負責人; 學術兼職 國際輻射委員會委員兼任工作組組長、IAMAS-CN青年委員會委員 《高原氣象》、《光學學報》青年編委💁🏿,中國激光雜誌社青年編委、《蘇州科技大學學報》編委 榮譽和獎勵 2022年,第18屆留日中國人優秀青年研究者獎📠; 2019年👩❤️👨,德國“洪堡學者”; 2016年,日本學術振興會海外特別研究員; 2020年🏃♂️➡️,上海市浦江人才計劃🦹🏻♀️; 2019年,第七屆清華大學—浪潮集團計算地球科學青年人才獎🤸🏿; 2018年🚏,獲國際攝影測量與遙感協會大氣環境遙感工作組授予的大氣環境遙感與協同分析研討會青年學者獎; 2018年,江蘇省“333工程”中青年科學技術帶頭人🧄; 發表論文 91.Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data. Atmospheric Chemistry and Physics, 24(8), 5025–5045. https://doi.org/10.5194/acp-24-5025-2024, 通訊作者 90.Cloud Classification by machine learning for Geostationary Radiation Imager,Transactions on Geoscience and Remote Sensing(2024)🤾🏿📝,DOI:10.1109/TGRS.2024.3353373.通訊作者. 89.FuXi: a cascade machine learning forecasting system for 15-day global weather forecast,npj Climate and Atmospheric Science (2023)🕺🏿😕,6:190,合作作者. 88.基於生成對抗網絡和衛星數據的雲圖臨近預報.應用氣象學報 (2023), 34(2): 220-233, Doi:10.11898/1001-7313.20230208, 合作作者. 87.Parameterization of optical properties for liquid cloud droplets containing black carbon based on neural network, Optics Express (2023), 31, 40124-40141, Doi:https://doi.org/10.1364/OE.503825, 通訊作者. 86. A Hybrid Algorithm for Dust Aerosol Detection: Integrating Forward Radiative Transfer Simulations and Machine Learning, IEEE Transactions on Geoscience and Remote Sensing, (2023), 61:1-15, 4104715, 通訊作者. 85.雲垂直重疊特性與風切變強度的參數化關系構建,地球物理學進展(2023)🙅🏻♂️,38(3):1000-1012, Doi: 10.6038/pg2023GG0093, 通訊作者. 84. A neural network-based scale-adaptive cloud-fraction scheme for GCMs. Journal of Advances in Modeling Earth Systems (2023), 15, e2022MS003415. Doi:doi/10.1029/2022MS003415, 合作作者. 83.Transfer-Learning-Based Approach to Retrieve the Cloud Properties Using Diverse Remote Sensing Datasets, IEEE Transactions on Geoscience and Remote Sensing (2023), 61:1-10, 2023, Doi: 10.1109/TGRS.2023.3318374, 通訊作者. 82. The deep-learning-based fast efficient nighttime retrieval of thermodynamic phase from Himawari-8 AHI measurements. Geophysical Research Letters (2023), 50, e2022GL100901. Doi: doi.org/10.1029/2022GL100901, 通訊作者. 81. Integrated efficient radiative transfer model named Dayu for simulating the imager measurements in cloudy atmospheres. Optics Express (2023), 31(10): 15256-15288. DOI: https://doi.org/10.1364/OE.482762, 通訊作者. 80. Optimized Alternate Mapping Correlated K-Distribution Method for Atmospheric Longwave Radiative Transfer. Journal of Advances in Modeling Earth Systems (2023), 15(5), e2022MS003419: 1-17. DOI: https://doi.org/10.1029/2022MS003419, 通訊作者. 79. Cloud Identification and Properties Retrieval of the Fengyun-4A Satellite Using a ResUnet Model. IEEE Transactions on Geoscience and Remote Sensing (2023), 61: 1-18. DOI:https://doi.org/10.1109/TGRS.2023.3252023, 通訊作者. 78. Estimate of daytime single-layer cloud base height from advanced baseline imager measurements. Remote Sensing of Environment (2022), 274(112970): 1-15. DOI: https://doi.org/10.1016/j.rse.2022.112970, 合作作者. 77. Estimating daily ground-level NO2 concentrations over China based on TROPOMI observations and machine learning approach. Atmospheric Environment (2022), 289, 119310: 1-12.DOI: https://doi.org/10.1016/j.atmosenv.2022.119310, 通訊作者. 76. Polarized Discrete Ordinate Adding Approximation for Infrared and Microwave Radiative Transfer. Journal of Quantitative Spectroscopy and Radiative Transfer (2022), 293, 108368: 1-14. DOI: https://doi.org/10.1016/j.jqsrt.2022.108368, 通訊作者. 75. Cloud Detection and ClassificationAlgorithms for Himawari-8 Imager Measurements Based on Deep Learning. IEEE Transactions on Geoscience and Remote Sensing (2022), 60,4107117: 1-17. DOI: https://doi.org/10.1109/TGRS.2022.3153129, 通訊作者. 74. A broadband infrared radiative transfer scheme including the effect related to vertically inhomogeneous microphysical properties inside water clouds. Journal of Quantitative Spectroscopy and Radiative Transfer (2022), 285, 108160:1-33.DOI: https://doi.org/ 10.1016/j.jqsrt.2022.108160, 合作作者. 73.人工智能與物聯網在大氣科學領域中的應用. 地球物理學進展 (2022), 37(1): 94-109. DOI: https://doi.org/10.6038/pg2022EE0521, 通訊作者. 72. High Spatiotemporal Resolution PM2.5 Concentration Estimation with Machine Learning Algorithm: A Case Study for Wildfire in California.Remote Sensing (2022), 14(7): 1-17. DOI: https://doi.org/10.3390/rs14071635, 合作作者. 71. El Niño Modoki can be mostly predicted more than 10 years ahead of time. Scientific Reports (2021), 11:17860:1-14. DOI: https://doi.org/10.1038/s41598-021-97111-y, 合作作者. 70. Classification of Weather Phenomenon From Images by Using Deep Convolutional Neural Network. Earth and Space Science(2021), 8(5),e2020EA001604:1-9. DOI: https://doi.org/ 10.1029/2020EA001604, 通訊作者. 69. Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things. IEEE Internet of Things Journal (2021)🥼,8: 3323-3330, 合作作者. 68.Zhou Zecheng, Feng Zhang*, Haixia Xiao, Fuchang Wang, Xin Hong, Kun Wu, and Jinglin Zhang, 2021: A Novel Ground-Based Cloud Image Segmentation Method by Using Deep Transfer Learning. IEEE Geoscience and Remote Sensing Letters (2021),19: 1-5, 通訊作者. 67. Atmospheric moisture shapes increasing tropical cyclone precipitation in southern China over the past four decades. Environmental Research Letters (2021), 16, 034004: 1-6, 合作作者. 66. Estimating Rainfall with Multi-Resource Data over East Asia Based on Machine Learning.Remote Sensing (2021),13, 16: 3332-3361, 合作作者. 65. Community Integrated Earth System Model (CIESM): Description and Evaluation. Journal of Advances in Modeling Earth Systems (2020), 12, e2019MS002036:1-29. DOI: https://doi.org/10.1029/2019MS002036, 合作作者. 64. Efficient design of the realization scheme of the invariant imbedding (IIM) T-matrix light scattering model for atmospheric nonspherical particles. Journal of Quantitative Spectroscopy and Radiative Transfer (2020) ,251,106999: 1-17., 合作作者. 63. Larger Sensitivity of Arctic Precipitation Phase to Aerosol than Greenhouse Gas Forcing. Geophysical Research Letters (2020), 47,e2020GL090452: 1-11. DOI: https://doi.org/ 10.1029/2020GL090452, 合作作者. 62. Possible mechanisms of summer cirrus clouds over the Tibetan Plateau. Atmospheric Chemistry and Physics (2020), 20(20): 11799–11808., 第一作者. 61. The semi-diurnal cycle of deep convective systems over Eastern China and its surrounding seas in summer based on an automatic tracking algorithm. Climate Dynamics (2020), 56:357-379, 通訊作者. 60.Long-term trends in Arctic surface temperature and potential causality over the last 100years.Climate Dynamics (2020),55:1443–1456, 通訊作者. 59. Efficient radiative transfer model for thermal infrared brightness temperature simulation in cloudy atmospheres. Optics Express (2020), 28: 25730-25749, 通訊作者. 58. Best Water Vapor Information Layer of Himawari-8-Based Water Vapor Bands over East Asia.Sensors (2020), 20: 2394-2410, 通訊作者. 57. Future drought in the dry lands of Asia under the 1.5ºC and 2.0ºC warming scenarios. Earth Future (2020), 8(6), e2019EF001337:1-13, 通訊作者. 56. Impact of δ-Four-Stream Radiative Transfer Scheme on global climate model simulation.Journal of Quantitative Spectroscopy and Radiative Transfer (2020), 243,106800:1-13, 通訊作者. 55.Potential impacts of future reduced aerosols on internal dynamics characteristics of precipitation based on model simulations over southern China.Physica A: Statistical Mechanics and its Applications (2020),545, 123808:1-13, 通訊作者. 54. The δ -six-stream spherical harmonic expansion adding method for solar radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer (2020),243, 106818:1-17, 通訊作者. 53. A novel multiple small-angle scattering framework for interpreting anisotropic polarization pattern of lidar returns from water clouds.Journal of Quantitative Spectroscopy and Radiative Transfer (2020), 242.106794:1-12,合作作者. 52. Connections between Stratospheric Ozone Concentrations over the Arctic and Sea Surface Temperatures in the North Pacific.Journal of Geophysical Research: Atmospheres (2020),(4):1-18, 合作作者. 51. Future haze events in Beijing,China: When climate warms by 1.5 and 2.0oC. International Journal of Climatology (2019),.40(8): 3689-3700, 合作作者. 50.An improved Eddington approximation method for irradiance calculation in a vertical inhomogeneous medium. Journal of Quantitative Spectroscopy and Radiative Transfer (2019), 226:40-50, 通訊作者. 49.Classification of ice crystal habits observed from airborne Cloud Particle Imager by deep transfer learning.Earth and Space Science (2019), 6,1877-1886, 通訊作者. 48. Multi-layer solar radiative transfer considering the vertical variation of inherent microphysical properties of clouds.Optics Express (2019),27(20):A1569-A1590, 通訊作者. 47. The Impact of Various HITRAN Molecular Spectroscopic Databases on Infrared Radiative Transfer Simulation. Journal of Quantitative Spectroscopy & Raidiatve Transfer (2019), 234: 55-63, 通訊作者. 46. Alternate Mapping Correlated k-Distribution Method for Infrared Radiative Transfer Forward Simulation. Remote Sensing (2019),11(9): 994-1006, 第一作者. 45. Comparisons of δ-two-stream and δ-four-stream radiative transfer schemes in RRTMG for solar spectra.Scientific Online Letters on the Atmosphere (2019),15:87-93, 通訊作者. 44.Accounting for Several Infrared Radiation Processes in Climate Models.Journal of Climate(2019),32: 4602-4620, 合作作者. 43. Simulation of daily precipitation from CMIP5 in the Qinghai–Tibet Plateau.Scientific Online Letters on the Atmosphere (2019),15: 68-74, 第一作者. 42. Development of a Rapid Retrieval Method for Cloud Optical Thickness and Cloud-top Height Using Himawari-8 Infrared Measurements.Scientific Online Letters on the Atmosphere (2019),15: 57-61, 合作作者. 41. MAX-DOAS measurements of tropospheric NO2 and HCHO in Nanjing and a comparison to ozone monitoring instrumen to bservations. Atmospheric Chemistry and Physics (2019),19: 10051-10071, 合作作者. 40.Assessment of Two-stream Approximations in a Climate Model.Journal of Quantitative Spectroscopy and Radiative Transfer (2019),225: 25–34, 通訊作者. 39. Analysis of sea-salt aerosol size distributions in radiative transfer. Journal of Aerosol Science (2019), 129: 71-86, 通訊作者. 38. Theoretical extension of universal forward and backward Monte Carlo radiative transfer modeling for passive and active polarization observation simulations.Journal of Quantitative Spectroscopy and Radiative Transfer (2019), 235: 81 - 94., 合作作者. 37. COMPARISON OF THREE TYPES OF AEROSOL PRODUCTS DURING 2015–2017 IN CHINA.Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. (2018), XLII-3/W5: 47-52, 通訊作者. 36.飛機尾跡雲識別及其輻射強迫的研究進展. 大氣科學學報 (2018), 41(5): 577-581, 通訊作者. 35. Radiative transfer in the region with solar and infrared spectra overlap.Journal of Quantitative Spectroscopy and Radiative Transfer (2018),219: 366-378, 第一作者. 34. CloudNet: Ground-based Cloud Classification with Deep Convolutional Neural Network. Geophysical Research Letter (2018),45: 8665–8672, 通訊作者. 33. The standard perturbation method for infrared radiative transfer in a vertically internally inhomogeneous scattering medium. Journal of Quantitative Spectroscopy and Radiative Transfer (2018),213: 149-158, 通訊作者. 32. A new radiative transfer method for solar radiation in a vertically internally inhomogeneous medium. Journal of the Atmospheric Sciences (2018),75: 41-55, 第一作者. 31.北半球極區平流層冬季12月與1-2月氣候變化形勢的對比.大氣科學學報 (2018), 41(3): 416-422, 合作作者. 30.太陽準周期變化對北半球夏季平流層加熱率的影響.大氣科學學報 (2018), 40(6): 729-736, 合作作者. 29. Explicit Solutions of the Mixing Rules with Three-Component Inclusions.Journal of Quantitative Spectroscopy and Radiative Transfer (2017), 207: 78-82, 合作作者. 28. A simple parameterization of the maximum ozone heating rate height. Infrared Physics & Technology (2017),87: 104-112. DOI:https://doi.org/10.1016/j.infrared.2017.09.002, 第一作者. 27. Comparison of Chebyshev and Legendre polynomial expansion of phase function of cloud and aerosol particles. Advances in Meteorology(2017),1835169: 1-10, 第一作者. 26.Double-delta-function adjustment in thermal radiative transfer. Infrared Physics & Technology (2017),86: 139-146, 通訊作者. 25. Causality of the drought in the southwestern United States based on observations.Journal of Climate (2017),30 (13): 4891-4896, 第一作者. 24. Variational iteration method for infrared radiative transfer in a scattering medium.Journal of the Atmospheric Sciences, 74: 419-430, 第一作者. 23.A new parameterization of canopy radiative transfer for land surface radiation models. Advance in Atmospheric Sciences (2017), 34: 613–622, 第一作者. 22. Accounting for Gaussian quadrature in four-stream radiative transfer algorithms.Journal of Quantitative Spectroscopy and Radiative Transfer (2017), 192: 1–13, 第一作者. 21. Reconstruction of driving forces from nonstationary time series including stationary regions and application to climate change. Physic A: Statistical Mechanics and its Applications (2017), 473: 3197–3204, 第一作者. 20. Simultaneously simulating the scattering properties of nonspherical aerosol particles with different sizes by the MRTD scattering model. Optics Express (2017), 25(15): 17872-17891, 合作作者. 19.Light scattering computation model for nonspherical aerosol particles based on multi-resolution time-domain scheme: model development and validation.Optics Express (2017), 25: 1463-1486, 合作作者. 18.熱帶地區出射長波輻射的長程持續性研究.熱帶氣象學報 (2017), 33(3): 426-432., 通訊作者. 17. Analytical infrared delta-four-stream adding method from invariance principle.Journal of the Atmospheric Sciences (2016), 73: 4171–4188, 第一作者. 16. A note on double Henyey–Greenstein phase function. Journal of Quantitative Spectroscopy and Radiative Transfer (2016),184: 40-43, 第一作者. 15. Adding method of delta-four-stream spherical harmonic expansion approximation for infrared radiative transfer parameterization. Infrared Physics & Technology (2016), 78: 254-262, 通訊作者. 14.大氣粒子散射相函數的參數化方案比較及其改進. 氣象學報 (2016), 74: 784-795,通訊作者. 13. Causality of global warming seen from observations: a scale analysis of driving force of the surface air temperature time series in the Northern Hemisphere. Climate Dynamics (2016), 46:3197-3204, 合作作者. 12. The color of biomass burning aerosols in the atmosphere.Scientific Reports (2016), 6: 28267-28275, 合作作者. 11. Determination of direct normal irradiance including circumsolar radiation in climate/NWP models.Quarterly Journal of the Royal Meteorological Society (2016), 142: 2591-2598, 合作作者. 10. Impact of four-stream radiative transfer algorithm on aerosol direct radiative effect and forcing.International Journal of Climatology (2015), 35: 4318-4328, 合作作者. 9. Analytical inversion of the absorption spectrum to determine non-spherical-particle size distribution.Journal of Quantitative Spectroscopy and Radiative Transfer (2014), 149: 128–137, 合作作者. 8. he dissipation structure of extratropical cyclones. Journal of Atmospheric Sciences (2014), 71: 69–88, 合作作者. 7.利用 CFSR 資料分析近30年全球雲量分布及變化. 氣象 (2014), 40(5) : 555-561🤏🏽,合作作者. 6. Doubling-adding method for delta-four-stream spherical harmonicexpansion approximation in radiative transfer parameterization.Journal of the Atmospheric Sciences (2013), 70: 3084-3101, 第一作者. 5. Analytical delta-four-stream doubling-adding method for radiative transfer parameterizations. Journal of the Atmospherc Sciences (2013), 70: 794-808, 第一作者. 4.一種計算非均質大氣雙向反射比的新方法.物理學報 (2012),61(18), 184212: 213-218, 第一作者. 3.一種處理漫射因子的新方法. 物理學報 (2011), 60(1), 010702: 151-154, 第一作者. 2. Two- and four-Stream combination approximations for computation of diffuse actinic fluxes,Journal of the Atmospheric Sciences (2010), 67, 3238–3252, 合作作者. 1. Influence of mass of cone spring on oscillatory period,Journal of Sound and Vibration (2006),, 295, 331-341, 第一作者. 專利 1.適用於雲物理特性連續變化的輻射傳輸方法,發明專利,專利號:ZL20171083636.4,排名第一 2.一種冰晶圖片的自動分類方法🛐,發明專利👩🏽💼,專利號🙍🏼♂️:ZL201910115964.3,排名第一 3.一種冰晶圖片的自動分割方法 ,發明專利👠,專利號🙇🏿:ZL 2021 1 0227920.7 ,排名第一 4.一種AMCKD模式中等效氣體吸收系數的最優化計算方法 ,發明專利,ZL 2022 1 0477213.8 ,排名第一 學生培養 出站博士後→😓: 2023年出站🤦🏼:付浩陽(出站去向🧒🏼:浙江師範大學任教)🎒;王夫常(中國氣象局上海臺風研究所聯合培養,出站去向:上海市氣象局);張璟(中國氣象局上海臺風研究所聯合培養,出站去向▫️:中國氣象局上海臺風研究所) 在站博士後🏏😸: 王晶晶(擬入職 上海理工大學)🤼🤶🏿,李雯雯(擬入職 上海理工大學)🙅🏿♂️,劉佳 博士🚔: 2019年畢業,吳琨(南信大招生,畢業去向:南信大任教) 2020年畢業,石怡寧(南信大招生,畢業去向:中國氣象科學研究院),楊全(南信大招生,畢業去向🧎🏻♂️:中國氣象科學研究院南京分院) 2022年畢業🤷❌,李雯雯(南信大招生,畢業去向:沐鸣2平台博士後)🙍🏽♀️;林瀚(南信大招生,畢業去向:福州大學任教) 其他情況說明 本課題組長期招收博士後,每年招收大氣科學🙎🏼♂️、電子科學與技術👩💻、電子信息專業的碩士和博士研究生。課題組學術氛圍濃厚,歡迎大氣科學🫶🏽、電子科學與技術、物理學、數學🎍、計算機等及相關專業背景的同學報考本課題組的碩士和博士研究生。 #以上信息由本人提供,更新時間:2024/06/16 |